

0957-4166(94)E0015-3

Asymmetric Synthesis of (2S,3R)-3-Amino-2-Hydroxydecanoic Acid: The Unknown Amino Acid Component of Microginin

Mark E. Bunnage,* Anthony J. Burke,* Stephen G. Davies,** and Christopher J. Goodwinb

⁴ The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford, OXI 3QY, UK. ^b Fisons plc, Pharmaceutical Division, Research and Development Laboratorics, Bakewell Road, Loughborough, LE11 ORH, UK.

Abstract: 3-Amino-2-hydroxydecanoic acid (AHDA) is an unusual amino acid purported to occur in the recently isolated angiotensin-converting enzyme inhibitor microginin. In order to elucidate the stereochemistry of the naturally occurring material, and thus complete the structural assignment of microgini, both the (2R,3R)-axi-diastereoisomer of AHDA have been prepared. Comparison of the ¹H and ¹³C nur spectroscopic data of the synthetic amino acids with that reported for the naturally occurring material indicates that the *relative* stereochemistry of the AHDA found in microginin is *syn*. The *absolute* stereochemistry of the natural amino acid is shown to be (2S,3R) by comparison of its reported CD spectrum with that recorded for the synthetic material prepared herein.

Microginin 1 is a pseudopentapeptidic angiotensin-converting enzyme (ACE) inhibitor which has recently been isolated from the freshwater blue-green alga *Microcystis aeruginosa*.¹ A number of techniques, including 2D nmr and chemical degradation, were employed to elucidate the partial structure of 1 with 3-amino-2hydroxydecanoic acid (AHDA) being implicated as the *N*-terminal component. The structure of this novel β amino- α -hydroxy amino acid was suggested by the ¹H and ¹³C nmr spectra, and the FAB mass spectrum, of a sample isolated by hydrolysis of microginin.¹ On the basis of a Cotton effect in the CD spectrum, it was further suggested that the α -stereogenic centre in this acid was of the *R* configuration, however this must be regarded as tentative, especially since the configuration of the β -stereogenic centre remained undefined.¹ In order to complete the structural and stereochemical assignment of microginin, this communication describes the asymmetric synthesis of authentic samples of the homochiral *anti* and *syn* diastereoisomers (2*R*,3*R*)-AHDA 2 and (2*S*,3*R*)-AHDA 3 for spectroscopic comparison with the naturally occurring acid.

We have previously shown that the conjugate addition of lithium (R)-(α -methylbenzyl)benzylamide (R)-4 to *tert*-butyl cinnamate, followed by *in situ* hydroxylation with (+)-(camphorsulfonyl)oxaziridine (+)-5, provides the corresponding *anti* - β -amino- α -hydroxy amino acid derivative with excellent diastereoselectivity (92% d.e.).² We anticipated therefore that the corresponding reaction using the readily available³ enoate 6 would provide the basis for an efficient synthesis of 2. Indeed, the tandem addition-hydroxylation of 6 using (R)-4 and (+)-5 provided the desired adduct 7 with good diastereoselectivity (88% d.e.) and this material was

isolated as a single diastereoisomer in 63% yield after flash chromatography. Subsequent catalytic debenzylation of 7 occurred without complication to afford the free β -amino- α -hydroxy ester 8 in excellent yield (91% yield).

The anti relative stereochemistry within 8 was confirmed by conversion to the oxazolidinone 9 using carbonyl diimidazole (CDI). Analysis of the ring proton coupling constant in 9 ($J_{4,5} = 8.6$ Hz) confirmed the *cis* stereochemistry^{4,5} which follows directly from the *anti* arrangement in 8, and hence 7. The *absolute* stereochemistry of 7 follows from addition of (R)-4 to the *Re*-face of 6 in an analogous manner to that previously elucidated for a number of related encates.^{2,5,6}

With the stereochemistry within 8 established, a convenient synthesis of the *anti* amino acid 2 was available. Thus, treatment of 8 with trifluoroacetic acid (TFA) to remove the *tert*-butyl group, conversion of the resultant TFA salt to the corresponding hydrochloride, and ion-exchange chromatography afforded the free amino acid 2 in 59% isolated yield; $[\alpha]_{12}^{25}$ +3.4 (c 0.70, 1N HCl).

Analysis of the ¹H nmr and ¹³C nmr spectra of synthetic 2 was completely consistent with the designated structure but a comparison with the spectroscopic data reported^{1,7} for the naturally occurring acid (see tables) revealed sufficient inconsistency to suggest that 2 was not the component of microginin. Consequently, it appeared that the naturally occurring amino acid was of the *syn* relative stereochemistry and, in order to unequivocally confirm this assignment, a synthesis of $(2S_3R)$ -AHDA 3 was undertaken.

We anticipated that 3 could be readily prepared from the *anti*- β -amino- α -hydroxy ester 8 using our previously reported oxazoline inversion protocol.² Thus, the N-benzoyl derivative 10 was prepared by treatment of 8 with one equivalent of benzoyl chloride and readily isolated in 83% yield. Intramolecular cyclisation of 10 under Mitsunobu conditions, with attendant stereochemical inversion at the α -centre, subsequently furnished the *trans*-oxazoline 11 ($J_{4,5} = 6.3$ Hz) in good yield (84%). Finally, exhaustive hydrolysis of 11 with 6N HCl, and ion exchange chromatography of the resultant hydrochloride salt, afforded

the desired free amino acid 3 as a single diastereoisomer in excellent yield (92%): $[\alpha]_{D}^{25}$ +5.4 (c 0.59, 1N HCl). As anticipated, the ¹H nmr and ¹³C nmr spectra of synthetic homochiral 3 correlated with the data recorded¹ for the natural acid (see tables) and confirmed that the unusual amino acid component found in microginin was indeed 3-amino-2-hydroxy-decanoic acid with *syn* relative stereochemistry.

Table 1: ¹H nmr data for anti and syn 3-amino-2-hydroxydecanoic acid 2 and 3

¹ H nmr (d ⁶ -DMSO)	2	3	Natural Acid
CH(OH)CHN	δ3.35, d, J 8,1 Hz	δ3.55, br	δ3.54, m
CH(OH)CHN	δ2.82, m	δ3.10, br	δ3.08, br
CH3(CH2)6	δ1.7 1 –1.26 , m	δ1.60–1.20 , m	<u>δ1.3-1.2, m</u>
CH3(CH2)6	δ0.86, ι, J 6.9 Hz	80.86, t, J 6.8 Hz	δ0.85, τ

Table 2: ¹³C nmr data for anti and syn 3-amino-2-hydroxydecanoic acid 2 and 3

¹³ C nmr (d ⁶ -DMSO)	2	3	Natural Acid ¹
<u>C</u> O2	-	δ173.4	-
CH(OH)CHN	δ70.3	δ69.5	δ69.60
CH(OH)CHN	δ53.9	δ53.0	δ52.30
CH ₃ (<u>C</u> H ₂) ₆	δ31.3	δ31.4	δ31.17
	δ30.2	δ29.1	828.90
	δ29.0	δ28.8	δ28.90
	δ28.6	δ28.7	δ28.48
	δ24.8	δ25.3	δ25.20
	δ22.1	δ22.3	δ22.07
<u>CH3(CH2)5</u>	δ14.0	δ14.2	δ13.95

It has been reported¹ that the CD spectrum of the AHDA isolated from microginin exhibited a negative Cotton effect at 215nm and, presumably on the assumption that the β -configuration was irrelevant, this was suggested to implicate the *R* stereochemistry at the α -stereogenic centre. However, the CD spectrum for synthetic 3 also indicated a negative Cotton effect in the same region⁸ (216nm) indicating that the previous stereochemical assumption was erroneous and that, in fact, 3, with the (2*S*, 3*R*) configuration, is the unknown amino acid component of microginin.⁹

In conclusion, the unknown amino acid component of microginin has been established as (2S,3R)-3amino-2-hydroxydecanoic acid 3 by an independent asymmetric synthesis and spectroscopic comparison with data reported for a sample secured by hydrolysis of the natural product. These studies complete the structural and stereochemical assignment of microginin, for which the revised structure is depicted below.

Acknowledgement: We thank Fisons plc and the EEC (HCM Network: "Stereoselective Organic Synthesis" CT92-0067) for support. We are also indebted to Dr Alison Rodger and co-workers for recording the CD spectra.

References

1. T. Okino, H. Matsuda, M. Murakami and K. Yamaguchi, Tetrahedron Lett., 1993, 34, 501.

- 2. M. E. Bunnage, S. G. Davies and C. J. Goodwin, J. Chem. Soc., Perkin Trans. 1, 1993, 1375.
- 3. J. M. Hawkins and T. A. Lewis, J. Org. Chem., 1992, 57, 2114.
- 4. S. Futagawa, T. Inui and T. Shiba, Bull. Chem. Soc. Jpn., 1973, 46, 3308.
- 5. M. E. Bunnage, S. G. Davies and C. J. Goodwin, Synlett, 1993, 731.
- 6. S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1991, 2, 183.

7. We thank Dr, Murakami for advising us of the solvent (d⁶-DMSO) and instruments (600MHz ¹H nmr; 75MHz ¹³C nmr) employed in the characterisation of the naturally occurring acid. The nmr spectra of the synthetic amino acids 2 and 3 reported herein were recorded using a Bruker AM500 spectrometer (500MHZ ¹H nmr; 125MHz ¹³C nmr).

8. The *anti* diastereoisomer 2 also exhibited a negative Cotton effect but at significantly lower wavelength (204 nm).

9. Dr. Murakami has recently informed us that he has independently reassessed the configuration of the 3amino-2-hydroxydecanoic acid found in microginin also as (25,3R).

(Received in UK 21 December 1993)